Provide feedback
Saved searches
Use saved searches to filter your results more quickly
Sign up
You can develop windows IoT Core app in Python in Visual Studio.To develop app in visual studio 2017 first you need to add the Python IoT Support feature in Visual Studio
Install the Cpython for UWP from the following link
CPython for UWP
After it is installed you can create a new project in Visual Studio and Select Python –> IoT Core project template
Now we need to install Visual C++ Compiler from the below link:
C++ compiler
install the packages from the Python environment node:
Now you can develop python apps in Visual Studio.
Following is a simple Python app:
import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) GPIO.setup(16, GPIO.IN) if GPIO.input(16) == False: # you can also use 1/0 instead of true/false print('I am pressing the button') time.sleep(0.2)
Follow on:
Select C#–> Windows Universal template
In the next screen select target version.We will select past version since that is more stable:
In the new project select the reference node and right click
In the references window select Windows IoT Extensions for the UWP
After you add the reference ,it is visible in the references tab:
By default MainPage.xaml is added in the project.We can UI elements to the page from the toolbox(Ctrl+Alt+X).Select View–>Toolbox to select the toolbox:
We will add a textblock and button on the Page.
In the button click we will add simple logic to check if GPIO controller is present in the device.
private void Button_Click(object sender, RoutedEventArgs e) { var gpio = GpioController.GetDefault(); if (gpio == null) { txtGPIOStatus.Text = "There is no GPIO controller on this device."; return; } else { txtGPIOStatus.Text = "There is GPIO controller in the device,you can use the GPIO pins. "; } }
Now you are ready to deploy your application to the remote IoT device.In the drop down select Remote Machine.
Right click the project and select deploy to deploy your application:
Follow on:
We can set the IP address of Remote machine and authentication mode in Visual Studio 2017 by following the below steps:
- Open the project which you want to deploy on remote machine in Visual Studio
- Right click and select properties.
- Select the debug tab
- In the marked yellow area you can enter the appropriate IP address of the IoT Device
Save and close the properties window.
The IP address will be set to whatever IP address you would mention in the Remote machine field above.
You can also set other fields in the properties page such as Authentication mode.
Follow on:
Here we will implement a simple circuit using Raspberry PI GPIO for blinking LED after every few seconds.You will need the following to implement this:
- Breadboard
- Raspberry PI
- Resistor
- Led
- Two male to female jumper wires
First you will need to make the connection the breadboard.
In breadboard make the following circuit connection:
- attach the led to breadborad:The long pin of led is anode(+ev) and short leg is cathode(-ev).
- attach one end of resistor in same column as the anode(long leg) of led and attach the another end to another point in same row.
- attach jumper wires:attach one jumper wire from short leg of led to ground GPIO(one of the GPIO: 6,14,20,39,25) in raspberry pi. attach another jumper wire from another end of resistor to GPIO 5( you can use any other GPIO)
To implement Windows 10 IoT Core app you need to create UWP app.
After you create a new UWP app you need to modify the MainPage.Xaml as:
Import the following namespace in the MainPage.xaml page:
using Windows.Devices.Gpio;
declare variables of type GpioPin and GpioPinValue as:
private GpioPin gpioPin; private GpioPinValue gpioPinValue;
Now we need to initialize the GPIO pin we have declared above.We can initialise it in the Init() method as:
private void InitGPIO() { var gpioController= GpioController.GetDefault(); gpioPin = gpioController.OpenPin(5); gpioPin.Write(GpioPinValue.High); gpioPin.SetDriveMode(GpioPinDriveMode.Output); }
We are doing following here:
- retrieving gpioController object using the static GetDefault() method of the GpioController class
- Updating the pin with a value using the Write() method.We are setting the value GpioPinValue.High value of the GpioPinValue enum
- Finally we are setting the mode of the pin as output
private void time_elapsed(object sender, object e) { if (gpioPinValue == GpioPinValue.High) { gpioPinValue = GpioPinValue.Low; gpioPin.Write(gpioPinValue); LED.Fill = redBrush; } else { gpioPinValue = GpioPinValue.High; gpioPin.Write(gpioPinValue); LED.Fill = grayBrush; } }
Now we need to define a method which will be called every 5 seconds.This method will be called after every 5 seconds and it will reverse the current value of GPIO pin.
private void time_elapsed(object sender, object e) { if (gpioPinValue == GpioPinValue.High) { gpioPinValue = GpioPinValue.Low; gpioPin.Write(gpioPinValue); LED.Fill = ledMainBrush; } else { gpioPinValue = GpioPinValue.High; gpioPin.Write(gpioPinValue); LED.Fill = ledDimBrush; } } private SolidColorBrush ledMainBrush = new SolidColorBrush(Windows.UI.Colors.Blue); private SolidColorBrush ledDimBrush = new SolidColorBrush(Windows.UI.Colors.LightGray);
Following is the complete sample:
public sealed partial class MainPage : Page { private GpioPin gpioPin; private GpioPinValue gpioPinValue; private DispatcherTimer timer; private SolidColorBrush ledMainBrush = new SolidColorBrush(Windows.UI.Colors.Blue); private SolidColorBrush ledDimBrush = new SolidColorBrush(Windows.UI.Colors.LightGray); public MainPage() { InitializeComponent(); timer = new DispatcherTimer(); timer.Interval = TimeSpan.FromMilliseconds(200); timer.Tick += time_elapsed; InitGPIO(); if (gpioPin != null) { timer.Start(); } } private void InitGPIO() { var gpioController = GpioController.GetDefault(); gpioPin = gpioController.OpenPin(LED_PIN); gpioPinValue = GpioPinValue.High; gpioPin.Write(gpioPinValue); gpioPin.SetDriveMode(GpioPinDriveMode.Output); GpioStatus.Text = "GPIO pin initialized correctly."; } private void time_elapsed(object sender, object e) { if (gpioPinValue == GpioPinValue.High) { gpioPinValue = GpioPinValue.Low; gpioPin.Write(gpioPinValue); LED.Fill = ledMainBrush; } else { gpioPinValue = GpioPinValue.High; gpioPin.Write(gpioPinValue); LED.Fill = ledDimBrush; } }
Follow on:
In this example we will see how to connect push button to raspberry pi.The push button will act as an input interface to raspberry pi.
To implement the circuit fort the application we will need the following:
- breadboard
- jumper wires (2 male to female)
- push button
- raspberry pi (b+ in this example)
set up the circuit as:
attach the push button on the breadboard such that two terminals are together and 2 are separated.You need to use different unconnected rows in the breadboard.
connect the jumper wires
- GPIO Grd(PIN 3) to one terminal of push button
- GPIO 16 to other terminal of push button
Following is the layout of the raspberry pi GPIO (3 B+).
Following is the Python code:
import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) GPIO.setup(16, GPIO.IN) if GPIO.input(16) == False: # you can also use 1/0 instead of true/false print('I am pressing the button') time.sleep(0.2)
There is one important point to note here,the call to setup() method:
GPIO.setup(16, GPIO.IN)
What this does is set the GPIO pin which you want to use.Here we are using the GPIO pin 16 ,but you can use another GPIO.
and we are reading the input using the GPIO.input() method.This method return boolean values ,TRUE/FALSE or 1/0.
Inputs are Boolean values: 1 or 0, GPIO.HIGH or GPIO.LOW, True or False.
You can save the above script in a file called pushButon.py and execute it as:
python pushButon.py
If you run the above code and press the button then the following text will be printed:
I am pressing the button
Follow on:
Пройдите тест, узнайте какой профессии подходите
Узнайте, как использовать Python для работы с устройствами интернета вещей (IoT), включая MQTT, GPIO и облачные сервисы.
Интернет вещей (IoT) — это сеть физических устройств, которые обмениваются данными и взаимодействуют друг с другом через интернет. Python является одним из самых популярных языков программирования для работы с IoT, благодаря своей простоте, мощным библиотекам и широкому сообществу. В этой статье мы рассмотрим основы использования Python для работы с устройствами IoT.
Установка необходимых библиотек
Для начала работы нам потребуются две основные библиотеки: paho-mqtt
и RPi.GPIO
. Установите их с помощью следующей команды:
pip install paho-mqtt RPi.GPIO
Работа с MQTT
MQTT (Message Queue Telemetry Transport) — это протокол, который часто используется для связи между устройствами IoT. Он основан на модели «издатель-подписчик», что позволяет устройствам отправлять и получать сообщения через центральный брокер.
Для работы с MQTT в Python используем библиотеку paho-mqtt
. Вот пример кода для отправки и получения сообщений:
import paho.mqtt.client as mqtt # Обработчик, вызываемый при подключении к брокеру def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) client.subscribe("iot/test") # Обработчик, вызываемый при получении сообщения def on_message(client, userdata, msg): print(msg.topic+" "+str(msg.payload)) client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect("iot.eclipse.org", 1883, 60) client.loop_forever()
Этот код подключается к брокеру MQTT, подписывается на топик «iot/test» и выводит полученные сообщения.
Работа с GPIO
GPIO (General Purpose Input/Output) — это контакты на устройствах IoT, которые позволяют подключать различные компоненты, такие как светодиоды, кнопки и датчики. В Python для работы с GPIO используется библиотека RPi.GPIO
. Вот пример кода для мигания светодиодом:
import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) GPIO.setup(18, GPIO.OUT) while True: GPIO.output(18, GPIO.HIGH) time.sleep(1) GPIO.output(18, GPIO.LOW) time.sleep(1)
Этот код устанавливает режим управления GPIO, настраивает контакт 18 как выход и мигает светодиодом, подключенным к этому контакту.
Взаимодействие с облачными сервисами
Помимо работы с локальными устройствами, Python также может использоваться для взаимодействия с облачными сервисами IoT, такими как AWS IoT, Azure IoT Hub и Google Cloud IoT Core. Эти сервисы предоставляют более высокий уровень управления, безопасности и аналитики для ваших IoT-приложений.
Вот пример кода для отправки данных с датчика температуры на AWS IoT с использованием библиотеки AWSIoTPythonSDK
:
from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTClient import time myMQTTClient = AWSIoTMQTTClient("myClientID") myMQTTClient.configureEndpoint("YOUR.ENDPOINT", 8883) myMQTTClient.configureCredentials("ROOT_CA.pem", "PRIVATE_KEY.pem", "CERTIFICATE.pem") myMQTTClient.connect() print("Connected to AWS IoT") while True: temperature = read_temperature_sensor() # Функция для чтения данных с датчика myMQTTClient.publish("iot/temperature", str(temperature), 1) time.sleep(60)
Этот код подключается к AWS IoT, используя ваши учетные данные, и отправляет данные с датчика температуры каждую минуту.
Заключение
В этой статье мы рассмотрели основы использования Python для работы с устройствами IoT, включая MQTT, GPIO и облачные сервисы. Python является мощным и гибким инструментом для разработки IoT-приложений, и мы надеемся, что эти примеры помогут вам начать свой путь в этой захватывающей области. 😊
Last Updated :
27 Sep, 2024
The integration of Python into the Internet of Things (IoT) signifies a transformation in how we develop, implement, and scale IoT applications. Python’s simplicity, versatility, and robust library ecosystem make it an excellent choice for IoT development, enabling everything from simple home automation systems to complex industrial IoT solutions.
In the following article, we will understand the use of Python in programming Internet of Things (IoT) devices and create a backend for them to work.
Importance of the Internet of Things
The Internet of Things (IoT) is transforming how we interact with technology, integrating it into every facet of our lives. Here are some key reasons why IoT is so important:
- Efficiency and Productivity: IoT enables automation in homes, factories, and offices, which can increase productivity and operational efficiencies.
- Real-Time Data: IoT devices provide real-time data that can be used for monitoring, analysis, and decision-making.
- Remote Control and Automation: IoT allows for the remote operation and automation of daily tasks.
- Improved Decision Making: With the vast amounts of data that IoT devices generate, businesses and individuals can make more informed decisions.
- Cost Reduction: IoT can help reduce costs by optimizing energy use and improving resource management.
Understanding IoT and Python’s Role
The Internet of Things refers to a vast network of connected physical objects embedded with sensors, software, and other technologies. These objects collect and exchange data with the internet, integrating the physical and digital worlds. This convergence enhances automation, efficiency, and decision-making across various sectors including healthcare, agriculture, and manufacturing.
Why Python for IoT?
Python is favored for IoT due to its simplicity, readability, and a rich ecosystem of libraries. Python is a popular choice for developing Internet of Things (IoT) applications due to several compelling advantages:
- Simplicity and Readability: Python’s syntax is clear and concise, making it easy to learn and use, especially for beginners.
- Extensive Libraries and Frameworks: Python has a vast ecosystem of libraries and frameworks that can significantly accelerate IoT development. Libraries like NumPy and Pandas facilitate data analysis.
- Platform Independence: Python is a cross-platform language, meaning it can run on various operating systems including Windows, macOS, Linux, and even on smaller devices like Raspberry Pi, which is popular for IoT projects.
- Community Support: Python has one of the largest programming communities, providing extensive support through forums, tutorials, and third-party software.
- Integration Capabilities: Python integrates well with other languages and technologies, which is vital in the IoT landscape where different types of technologies and protocols must work together seamlessly.
- Prototyping Speed: Python enables rapid prototyping—crucial in IoT development where adjusting to new requirements and testing ideas quickly can significantly cut down development time and cost.
- Data Handling and Analytics: IoT devices generate massive amounts of data, and Python’s capabilities in handling and analyzing data are well-established. With libraries like Matplotlib for data visualization and Scikit-Learn for machine learning.
Python Platforms for IoT Development
- Python on Raspberry Pi
- Python on PyBoard
- SP8266 and ESP32 with MicroPython
Python on Raspberry Pi
The Raspberry Pi is a low-cost, credit-card-sized computer that plugs into a computer monitor or TV and uses a standard keyboard and mouse.
Why It’s Great for IoT:
- Versatility: The Raspberry Pi can run full versions of Linux, such as Raspbian, which allows it to execute large Python programs and interact with the internet and external hardware.
- Community and Resources: There is a huge community around Raspberry Pi, offering extensive tutorials, projects, and third-party accessories that enhance its capabilities for IoT projects.
- GPIO Pins: General Purpose Input/Output (GPIO) pins on the Raspberry Pi allow it to interact with other electronic components, sensors, and actuaries directly, making it ideal for real-world IoT applications.
Here is an project example of how to use the GPIO Zero library in Python to control the input and output ports on a Raspberry Pi. This code snippet demonstrates how to set up a button and an LED, and make the LED light up whenever the button is pressed:
Control Arduino with Python and pyFirmata
Installing PyFirmata Module
You should have Python and pip Installed in your system. Then you can run the following command to install the PyFirmata module in your system.
pip install pyFirmata
Upload “StandardFirmata” to Arduino
StandardFirmata is a code that helps Python get access to the Arduino board.
First, connect your Arduino to the computer/raspberry pi/laptop using the USB cable.
Know the port name the Arduino is connected to. In windows, the port name will be something like “COMx” (where x is an integer), while in Linux it will be a string starting with “/dev/tty”. You might find this information by opening Device Manager in Windows.
Next, you can open the Arduino IDE and follow the steps to upload the StandardFirmata to the board.
Get StandardFirmata: File -> Examples -> Firmata -> Standard Firmata
Specify Correct Board and Port: Tools -> Board -> Select Arduino UNO (or your own board) -> Tools -> Port -> Select your Port
Upload the StandardFirmata: Click on the upload button to upload the code to Arduino.
Making the connections
Make the connections like the image above. Here I have connected the 4 LEDs to the 13th, 12th, 11th, and 10th pins. There was no specific reason to connect them in that manner. You can use any other digital pin.
Write the Python program and Run it
Python
from pyfirmata import Arduino from time import sleep # Connecting to the board board = Arduino('COM8') # initializing the LEDs led1 = board.get_pin('d:13:o') led2 = board.get_pin('d:12:o') led3 = board.get_pin('d:11:o') led4 = board.get_pin('d:10:o') # wait for 1s at every count value wait = 1 # initialise all to False (off) val_1 = val_2 = val_3 = val_4 = False # led4 is the least significant bit and led1 is the most significant bit while True: # this is an infinite loop which won't end untill the terminal is killed for ____ in range(2): for ___ in range(2): for __ in range(2): for _ in range(2): sleep(wait) # Updating the values and printing them led1.write(val_1) led2.write(val_2) led3.write(val_3) led4.write(val_4) print(int(val_1), int(val_2), int(val_3), int(val_4)) val_4 = not val_4 val_3 = not val_3 val_2 = not val_2 val_1 = not val_1 print("\n\n")
Output:
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1...
Here is the Simulation Output!
ESP8266 and ESP32 with MicroPython
Overview: ESP8266 and ESP32 are low-cost Wi-Fi microchips with full TCP/IP stack and microcontroller capability. They are highly popular for IoT projects due to their wireless capabilities.
Why ESP8266 and ESP32 Great for IoT:
- Wireless Functionality: Both chips support Wi-Fi, which is essential for IoT devices needing to communicate over the network.
- Cost-Effective: These chips are very affordable, making them a go-to choice for building networked machines at a lower cost.
- MicroPython Support: Running MicroPython on these devices allows developers to leverage Python’s simplicity to control hardware functionality easily and effectively.
- Powerful Features: The ESP32, being the successor to ESP8266, includes Bluetooth capabilities and better power efficiency, enhancing its usability in IoT projects that require low energy consumption and connectivity.
Example of a Simple MicroPython Script:
- Installation: First, install the esptool module using pip with the command:
$ pip install esptool.
- Firmware: Download the latest MicroPython firmware from the official website. Use esptool to flash this firmware onto your device. Remember to erase the flash memory of the board before installing the new firmware to ensure a clean setup.
- Development Environment: You can write your MicroPython code on a standard computer using any compatible IDE designed for MicroPython. After coding, compile and transfer the script to the ESP8266 or ESP32’s memory.
Project Example code
Here’s a basic example demonstrating how to control an LED with an ESP8266 or ESP32 using MicroPython:
Python
from machine import Pin import time # Initialize a pin for the LED ledPin = Pin(2, Pin.OUT) # Toggle the LED on and off in a loop while True: ledPin.on() # Turn on the LED time.sleep(1) # Wait for one second ledPin.off() # Turn off the LED time.sleep(1) # Wait for another second
Explanation:
- Libraries: We import Pin from machine to interact with GPIO pins, and time for handling delays.
- LED Control: We define ledPin as an output pin connected to the LED. The loop continuously turns the LED on and off every second, demonstrating basic pin control with MicroPython.
Python in IoT Backend
Python is an excellent choice for developing the backend systems of IoT applications due to its versatility, ease of use, and robust ecosystem. Here’s why Python is well-suited for the backend side of IoT:
- Data Handling: Python’s libraries like Pandas and NumPy excel in processing and analyzing large data volumes typical in IoT systems.
- API Development: Frameworks such as Flask and Django facilitate the quick creation of RESTful APIs for IoT device communication.
- Asynchronous Programming: Libraries like asyncio enhance backend scalability and efficiency by allowing for concurrent processing.
- Database Integration: Python supports a wide range of databases, enabling flexible data management solutions tailored to specific IoT needs.
- Scalability: Python integrates well with technologies like Docker and Kubernetes, simplifying the scaling of IoT applications in cloud environments.
- Security Features: Python provides robust security tools for data protection and secure user authentication.
- Machine Learning Capabilities: With libraries like TensorFlow and PyTorch, Python supports advanced data analytics and intelligent decision-making within IoT systems.
- Community Support: A vast developer community offers extensive resources and continuous improvements to Python’s IoT capabilities.
Conclusion
Python’s role in the Internet of Things (IoT) is both pivotal and transformative. Its simplicity, coupled with powerful libraries and frameworks, makes it an ideal language for developing IoT applications that require robust data handling, secure and efficient communication, and the ability to scale. Python’s integration with advanced machine learning libraries further enhances its capability to enable smart IoT solutions that can learn and adapt over time.
Installing Windows 10 IoT Core for Raspberry Pi
In this post I will be going to process of how to install Windows 10 IoT core for Raspberry Pi 2.
For more information about Windows IoT Core, please visit the official site https://developer.microsoft.com/en-us/windows/iot/docs. Windows IoT core is the operating system built for Internet of Things.
Requirement:
- Windows 10 PC
- SD Card
- Raspberry Pi 2
Get started
1. Download OS for Raspberry Pi
Firstly, we need to download Windows 10 IoT core package for Raspberry Pi 2 on the official website:
https://developer.microsoft.com/en-us/windows/iot/Downloads
After downloading the package, we then Install Windows IoT Core For Raspberry Pi on your PC.
Double-click on the file downloaded and install Windows 10 IoT Core for Raspberry Pi.
After installing, the flash file will be saved in your C drive (C:\Program Files (x86)\Microsoft IoT\FFU\RaspberryPi2\flash.ffu)
2. Download and install Windows ADK
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
Pleck check on “Imaging and Configuration Designer (ICD)”
To create and apply FFU images for Windows 10, Version 1607 and earlier, you can use Windows Imaging and Configuration Designer (ICD) which is included in the Windows Assessment and Deployment Kit (ADK) for Windows 10, Version 1607. You can use the Windows 10 version of DISM, which is included in the Windows 10 version of Windows Preinstallation Environment (WinPE)to apply FFU images
Apply the image to a drive. For a physical drive X:, the string should be the following form: \\.\PhysicalDriveX
, where X
is the disk number that diskpart provides, such as \\.\PhysicalDrive1.
Hard disk numbers start at zero. For more information about PhysicalDriveX
, see CreateFile function.
To check PhycicalDriverX, open CMD
diskpart
list disk
exit
At this point. Copy flash.ffu file to C:/
Then execute the command:
DISM /Apply-Image /ImageFile:C:\flash.ffu /ApplyDrive:\\.\PhysicalDrive1 /SkipPlatformCheck
For more information about /SkipPlatformCheck
, see Apply-Image in DISM image management command-line options
Now the Windows IoT is ready to use. Remove the SD card from PC and plug it into Raspberry Pi 2. Connect internet cable and power the board. Raspberry Pi will boot into Windows 10 IoT OS.